
Object-Oriented Development of an Optimization
Software in Java using Evolution Strategies

Veronika Reinauer1, Christian Magele2, Christian Scheiblich1, Andrej Stermecki2,
Remus Banucu1, Jan Albert1, Michael Jaindl2, and Wolfgang M. Rucker1

1 Inst. for Theory of Electr. Eng., Univ. of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
2 Inst. for Fundamentals and Theory in Electr. Eng., Univ. of Graz, Kopernikusgasse 24/III, 8010 Graz, Austria

Email: veronika.reinauer@ite.uni-stuttgart.de

Abstract—Finding the optimal set of parameters of an often
rather difficult system is a major task in numerical optimization.
Using evolution strategies is an optimization technique based on
mutation and recombination. A modular composition and thus
an applicability for different problems, applying e. g. different
simulation software or evaluation strategies, is provided by
the use of modern software techniques like design patterns.
Therefore, an innovative object-oriented software design for
implementing the evolution strategies using Java is presented,
discussed and proven by numerical examples.

I. INTRODUCTION

Solving real world optimization problems has become a
major task in computational electromagnetics in the recent
decades. Numerous different optimization strategies, stochastic
and deterministic ones as well as such looking for a single
optimal solution or for many possible solutions along the
Pareto optimal front have been developed and coupled in one
or another way with programs solving the resulting forward
problems. Recently, much effort has been put firstly on the
methodology, how to develop the optimization software in a
modular and hence in an expandable way and secondly on the
procedure, how to call and utilize different solvers. In this pa-
per a Java based object-oriented design of a (µ/ρ, λ) Evolution
Strategy (ES) is presented and coupled with different solvers
to compute the underlying field problems like EleFAnT2D [1]
and ANSYS [2].

II. PROBLEM DEFINITION

The optimization software consists of two different com-
ponents. The first one containing the optimization part is

Optimization software Solver:

set of geometry parameters

value of the quality function

- Simulation software, e.g. Ansysimplemented in Java

reached optimum?

END

yes

no

Fig. 1. Applied software and its interaction

implemented in Java and presents the main part; see Fig. 1.
Here the ES is chosen out of a set of available ones. In
this work, only the (µ/ρ, λ) ES is described closer in detail.
Additionally, the function to be minimized —called quality
function— as well as its dimension are set. Furthermore, the
sets of parameters are calculated in this optimization part and
the feasibility of the particular sets are examined.

During the procedure of optimization the values of the
quality function for the calculated sets of parameters have to
be determined. Regarding a magnetic field problem, the shape
of a special assembly has to be optimized in order to adjust
the magnetic field in a particular region. The detection of the
value of the quality function —called fitness of a particular
configuration— is realized using Ansys [2] or EleFAnT [1]
but due to the design of the optimization software any other
simulation tool can be used instead.

The value of the quality function is passed to the optimiza-
tion software. The optimization is stopped, if the minimum
is reached or a predefined stopping condition is fulfilled. The
best set of parameters is considered to be the solution.

III. OBJECT-ORIENTED DEVELOPMENT IN JAVA

According to the ES, an object-oriented design and im-
plementation were established in Java. The use of design
patterns [3],[4] allows for an effective computation of the
parameter sets as demanded by the strategies, independent of
the requested dimension of the quality function. By the object-

Config

Config2D Config4DConfig3D

Fig. 2. UML class diagramm of the Config classes

oriented implementation the software structure of Inheritance
is realized for the ES as well as for the Config objects that
stores amongst other things the set of parameters as well as
the corresponding value of the quality function. The superclass
Config covers the specific subclasses, e.g. Config2D applied
with an objective function with only two degrees of freedom;
see Fig. 2.

During the optimization, the code only depends on objects
of the particular superclass. Hence, the code of the opti-
mization software is uniform. Therefore, nearly no internal
maintenance is needed. For the extension of the software to
another ES or to another dimension of the quality function,
only a new subclass for the superclass has to be created. The
rest of the code has not to be changed.

IV. (µ/ρ, λ) EVOLUTION STRATEGY

Evolution Stategies (ES) imitate simplified biological fea-
tures [5]. A higher order (µ/ρ, λ) ES relies on the application
of population, mating and environmental selection, recom-
bination, reproduction and mutation [6]. In the beginning
an initial number of configurations is randomly generated,
taking the constraints of each optimization parameter into
account. Then, to move to the next generation, λ configurations
(children) are generated from the µ parental ones. Firstly, a
predefined number of parents (namely ρ parents) are selected
for recombination from the population by taking the fitness
of each parent into account (mating selection). Secondly, the
chosen ones undergo what is called arithmetic cross over (1).
In the (4/2, 12) ES used in this paper 2 parents

(
pi,pj

)
are selected out of 4 to produce 2 children

(
dk,dk+1

)
. This

procedure is repeated until λ=12 children have been produced.
The vectors d and p contain all trial variables to be modified
and a is a number chosen randomly between [0.8 · · · 1].

dk
unmut = api + (1− a)pj

dk+1
unmut = (1− a)pi + apj (1)

Each descendant inherits the step sizes from the predominant
parent. The main evolutionary operator is the mutation oper-
ator. Since smaller changes happen more frequently, mutation
is carried out by adding a vector v with normally distributed
components to the parameter vector of the unmutated de-
scendants dk

unmut to obtain dk
mut (2). Prior to mutation the

stepwidth σk of each descendant is either multiplied with or
divided by a factor α, which has to be determined at the
beginning of the iteration process. The factor α was set to
be 1.05 here.

dk
mut = dk

unmut + v
(
0, σk(α)

)
(2)

The (0, σk(α)) distribution makes a mutation in any arbitrary
direction equally likely. Finally, µ children with the best fitness
are selected to become the members of the next parental
generation (environmental selection). The iterative process is
stopped, when predefined criteria are reached.

V. NUMERICAL RESULTS

The (µ/ρ, λ) ES is applied to design the pole face of
an electromagnet (see Fig. 3) to adjust the magnetic field
in the region of interest in a prescribed way. Fig. 4 shows
a zoomed view of the problem together with the four trial
variables p1 to p4. The forward problem is solved using the
finite element method package EleFAnT2D [1]. The task is to
obtain a homogeneous field of |Bz| = 0.02 T in the region of
interest, which is right in the middle of the air gap and covers
80% of the area of the pole. The optimal solution was found

Fig. 3. Full Model of the Electro-
magnet. Fig. 4. Zoomed View of the

Region of Interest.

after approximately 1000 iterations of the (µ/ρ, λ) ES. The
diagrams of the initial and the optimized magnetic fields are
given in Fig. 5 and Fig. 6.

Fig. 5. Magnetic field in the region
of interest, initial configuration.

Fig. 6. Magnetic field in the region
of interest, best configuration.

VI. CONCLUSION

This modular set-up of the software offers a high portability
and is easy expandable. Due to the inheritance the optimization
part with the evolution strategies has not to be modified for
different requirements. The accuracy of the Java optimization
software is proven by the numerical example of a pole face
of an electromagnet. The optimization of the shape of an
electrical motor with the proposed object oriented software
coupled with Ansys will be presented in the full paper.

REFERENCES

[1] Computer program package EleFAnT2D, IGTE TUGraz,
http://www.igte.tugraz.at.

[2] Engineering Simulation Software, Ansys Inc., http://www.ansys.com.
[3] S. J. Metsker, and W. C. Wake, ”Design Patterns in Java,” 2nd edition,

Addison-Wesley Professional, 2006.
[4] Er. Freeman, El. Freeman, B. Bates, K. Sierra, and M. Loukides, ”Head

First Design Patterns,” 1st edition, O’Reilly Media, 2004.
[5] P. Alotto, C. Eranda, B. Brandstätter, G. Fürntratt, C. Magele, G. Molinari,

M. Nervi, K. Preis, M. Repetto, K. Richter, ”Stochastic Algorithms in
Electromagnetic Optimization,” IEEE Trans. on Magnetics, vol. 34, no.
5, pp. 3674 - 3677, 1998.

[6] C. Magele, A. Köstinger, M. Jaindl, W. Renhart, B. Cranganu-Cretu, J.
Smajic, ”Niching Evolution Strategies for Simultaneously Finding Global
and Pareto Optimal Solutions,” IEEE Trans. on Magnetics, vol. 46, no.
8, pp. 2743 - 2746, 2010.

